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Abstract

In scientific investigations, we frequently have data from computer experiment(s) as well as

related physical experimental data on the same factors and related response variable(s). There

may also exist one or more expert opinions regarding the response of interest. Traditional

statistical approaches consider each of these sets of data separately with corresponding separate

analyses and fitted statistical models. A compelling argument can be made that better, more

precise statistical models can be obtained if we simultaneously analyze the combined data using

a hierarchical Bayesian integrated modeling approach. However, such an integrated approach

must recognize important differences, such as possible biases, in these experiments and expert

opinions.

We illustrate the methodology by using it to model the thermodynamic operation point of

a top-spray fluidized bed microencapsulation processing unit. Such units are used in the food

industry to tune the effect of functional ingredients and additives. An important thermodynamic

response variable of interest, Y , is the steady-state outlet air temperature. In addition to a set

of physical experimental observations involving six factors used to predict Y , similar results

from three different computer models were also available. The integrated data from the physical

experiment and the three computer models are used to fit an appropriate response surface

(regression) model for predicting Y .
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1 Introduction

Computer models are often used to perform experiments before expensive physical experiments

are performed. The computer models attempt to reproduce the physical properties of a process

by mathematically representing the individual physical sub-processes. For example, in the food

industry, fluidized bed (or air suspension) processes are increasingly used to coat food particles

with preservatives and flavor enhancers. Some of the physical principles that govern the oper-

ation of fluidized beds are fairly well-understood (e.g., heat transfer and fluid flow), but others

are less well-characterized. As a result, computer models, based on these thermodynamic prin-

ciples of physics, are constructed that resemble and simulate the actual physical process. In this

paper we analyze data collected from three such computer models (each accounting for different

effects) as well as data collected from a corresponding physical experiment. We consider this

example further in Section 3.

It is statistically efficient and desirable to fit a single, common response surface model that

combines the physical experimental data and the computer model output data to express the

relationship between the factors and the response variable. Although the response variables of

interest in the computer and physical experiments may not be the same, we assume that they

can be related by a known transfer function. Thus, we effectively consider the same response

variable in both types of experiments. However, the computed (or measured) value of the

response variable need not be considered at the same factor values in both experiments. We

require only that there exist some common set of factors (either all or at least some) for both

experiments (see Section 2.3). For example, a broad (screening) computer experiment may be

performed first, followed later by a physical experiment in a smaller region of particular interest

(perhaps a corner) of the overall computer experiment design space.

In addition, one or more expert opinions may be available regarding the response variable

of interest. Traditional statistical approaches consider each of these sets of data separately with

corresponding separate designs, analyses, and results. A compelling argument can be made

that better, more powerful statistical results can be obtained if we simultaneously analyze the
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combined data using a recursive Bayesian hierarchical model (RBHM) that we propose in Section

2. As we will illustrate, the simultaneous analysis of such combined data permits the unknown

coefficients in an assumed overall regression (or response surface) model to be estimated more

precisely, thereby producing a better fitting response surface.

In Section 2 we present the methodology including our implementation of the RBHM. Section

3 contains a description of the mechanics and process variables involved in the fluidized bed

example and the experiment from which the data arise. We apply the RBHM methodology to

the fluidized bed study and present the resulting response surface in Section 3.3. Sensitivity

to prior specification is studied in Section 4. Finally, in Section 5 we discuss the results and

methodology.

2 Data Integration Model and Analysis

Fundamental to Bayesian estimation is the notion and use of prior and posterior distributions.

A good elementary discussion of prior and posterior probabilities and distributions is given in

Berry (1996). An RBHM provides a convenient way to sequentially combine the data as follows.

A set of initial informative, but diffuse, prior distributions is defined, one for each unknown

parameter. If they exist, any available expert opinion data are then used to update these priors

to form corresponding posterior distributions. This represents Stage 1 of the combined analysis.

These posteriors then become the prior distributions for the second stage, in which the computer

experimental data are used to update these priors to form Stage 2 posterior distributions. At

Stage 2, the posteriors thus represent the combined use of only the expert opinion and computer

data. Finally, these posteriors become the priors for Stage 3, in which the physical experimental

data are used to construct the final desired posteriors. In this way, all available data are used

recursively within the context of the model to successively (and more precisely) estimate all the

desired parameters of interest.

The design and analysis of computer experiments has evolved as the power of computers

has grown (although it has certainly not kept pace!). Sacks, et al. (1989) provide a review
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of techniques used in the analysis of output from complex computer codes as well as issues for

design. Latin hypercube sampling had its genesis in the design of computer experiments (McKay,

Beckman, and Conover 1979). A Bayesian treatment of the design and analysis of computer

experiments is presented in Currin et al. (1991). These papers are concerned primarily with

issues when the only source of information is the output from a complex computer model.

Combining multiple sources of information had its genesis in the meta analytic literature.

Zeckhauser (1971) provides an early treatment of meta analysis. Hedges and Olkin (1987) pro-

vide a nice review of meta analytic techniques. Meta analysis has not been viewed without

strong criticism (Shapiro 1994 and discussion). Müller et al. (1999) present a Bayesian hierar-

chical modeling approach for combining case-control and prospective studies, where effects due

to different studies as well as different centers are allowed.

Craig, et al. (2001) present an approach to forecasting from computer models which explicitly

incorporates two of the data sources we consider, expert opinion and computer experiments.

Considered there is the possibility of multivariate responses on the computer model (which they

call computer simulators). Physical data in the form of historical measurements is included

by using this information in prior (expert opinion specification). Their approach is based on a

Bayesian treatment with no hierarchical modeling and inventive ways of including several types

of expert opinion. The primary concern is with improvement of the prediction of the computer

code.

Kennedy and O’Hagan (2001) consider the three sources of data that we consider here in

this paper. Their approach uses a general Gaussian process model for the computer model as

a function of inputs. They use physical data to calibrate the computer experimental data and

to estimate unknown parameters of that model. They also find Bayesian hierarchical models a

useful tool in implementation of their models. Their framework is flexible and, in the context of

trying to improve computer models, the appropriate approach. The essential difference between

their work and our proposal is that we are trying to use computer model outputs and expert

opinion to improve estimation and prediction of the physical process, and Kennedy and O’Hagan
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are trying to use physical experimental data and expert opinion to improve the computer model.

The statistical notion of pooling data (sometimes also known as “borrowing strength”) un-

derlies the RBHM and analysis to be discussed. A commonly used, and extremely powerful

method for borrowing strength is hierarchical Bayesian modeling. A nice introduction to both

hierarchical Bayesian modeling and borrowing strength is given in Draper et al. (1992). The

basic idea involves the notion that, when information concerning some response of interest arises

from several independent, but not identical, data sources, a hierarchical model is often useful

to describe relationships involving the observed data and unobserved parameters of interest.

For example, unobserved parameters might be the coefficients and error variance in an assumed

response surface model, as well as unknown biases. Each source of data provides perhaps biased

information about these parameters, in which case methods that borrow strength will be useful.

The practical advantages of borrowing strength for estimating the unknown parameters will be

illustrated in Section 3.2.

We propose fitting models using information from three distinct sources: expert opinion,

computer experiments, and physical experiments. The problem is difficult because the informa-

tion sources are not necessarily all available at each of the design points. For example, physical

experiments may be performed according to a statistically designed experiment, while computer

experiments may be collected at (possibly) different design points. In addition, expert opinions

may be available at only a very limited set of design points, such as the center or corners of

the statistical design region. Our goal is to combine these sources of information using an ap-

propriately flexible integration methodology that considers (and automatically adjusts for) the

uncertainties and possible biases in each of these three data sources.

Thus, we begin by considering regression models of the form:

Y = f(X, β) + ε,

where X is a design matrix, β is a vector of unknown coefficients, and ε is a vector of unobserved

errors. Note that while this formulation can accommodate a general class of models, f(·),

including both linear and nonlinear regression models, in this and the following sections we
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consider only linear models (that is, f(X, β) = Xβ). While the strategy we employ is quite

general, the model and mathematics we develop in the following sections is applied to a normal

linear model. In addition, we consider only quantitative variables, although qualitative variables

coded with indicator variables fit naturally into this framework.

2.1 Physical Experimental Data

We assume we are interested in estimating the parameters of a model that describes a physical

experiment. For this example, assume that the physical experimental data can be described

using the following familiar model:

Y p ∼ N(Xpβ, σ
2I),

where the subscript p denotes the “physical experiment.” Thus, the physical experimental data

are assumed to be normally distributed with mean Xpβ, where Xp is a model matrix and β

is a vector of parameters that need to be estimated. We see that each physical observation is

independent of the others and has common (homoscedastic) variance σ2, which must also be

estimated.

If physical experimental data were the only information source considered, this model would

typically be fit using either standard least-squares regression methods (Draper and Smith 1981)

or standard Bayesian linear model methods (Gelman et al. 1995). However, we want to incorpo-

rate information both from experts and computer experimental data to “improve” our estimates

of β and σ2.

2.2 Expert Opinion

Suppose there are e expert opinions. These opinions do not have to be from distinct experts.

The ith expert opinion (i = 1, . . . , e) is elicited at design point xi. Some points in the design

space will have exactly one elicited expert opinion; others will have many or none. Each expert

observation contains the following information:

• the expected response, yoi
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• a subjective coverage probability on the physical response yi, ξi, and the quantile associated

with that probability, qξi (i.e., Pr(yi ≤ qξi) = ξi)

Typically, the analyst elicits a quantile of interest, that is, ξi is specified. However, the expert

may indicate which quantile she is most interested in specifying. The methods developed here

do not depend on which approach is taken. In addition, we consider the elicited “worth” of the

opinion in units of equivalent physical experimental data observations, m
(e)
oi . In other words,

suppose that a physical experiment could be conducted at xi that would yield one observation:

if the expert’s opinion should be weighted half of that observation then m
(e)
oi = 0.5. At times,

the elicited values (yoi
, ξi, qξi , m

(e)
oi ) may be obtained simply by requesting them from the

expert. However, it may be difficult for the expert to provide information directly on these

values (especially qξi and m
(e)
oi ), and other elicitation techniques may be useful (Meyer and

Booker 1990).

In order to use these data, we need to transform these individual pieces of information into

probability distributions that provide information about β and σ2. Assume for the moment that

the three quantities above can be used to create “data” with the following model:

Y o ∼ N(Xoβ + δo, σ
2Σo).

As with the physical experimental data, the expert data are assumed to be normally dis-

tributed. However, the mean is Xoβ+ δo, where δo is a vector of location biases that are expert

specific. The variances are also biased, and the matrix Σo contains the scale biases for each

expert. Besides location biases, in which an expert’s average value is high or low relative to the

true mean, scale biases often occur due to information over-valuation and are well-documented

in the elicitation literature. For example, an expert may be asked to provide what they think

is a 0.90 quantile, but responds with what is actually only a 0.60 quantile (Meyer and Booker

1990). Although responses from experts can be correlated by having non-diagonal elements in
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Σo, we consider uncorrelated responses; thus,

Σo =





















1/ko1 0 · · · 0

0 1/ko2 0 · · ·

... 0
. . . · · ·

0 · · · · · · 1/koe





















.

In addition, assume the following prior distributions for the unknown parameters β and σ2:

β|σ2 ∼ N(µ
o
, σ2Co)

σ2 ∼ IG(αo, γo),

where IG(a, b) is the inverse gamma distribution with density function

f(z|a, b) ∝ z−(a+1) exp

{

−
b

z

}

, z > 0.

Assume for the moment that we know δo and mo, where mo is a vector denoting the “worth”

of the expert opinions. Continue to assume that we have created “data” y
o
from the expert

opinions, and write out the likelihood for the data model:

(

1

|σ2Σo|.5

)

exp

{

−
1

2σ2
[(y

o
− (Xoβ + δo))

′Σ−1
o (y

o
− (Xoβ + δo))]

}

.

Using Bayes’ Theorem, we can use the data provided by the expert opinions to update the

prior distributions for β and σ2. The resulting Stage 1 posterior/updated prior distribution for

(β, σ2), conditional on η = (δo,Σo,mo,Co, µo, αo, γo), is

π(β|σ2, η, y
o
) ∼ N

(

(X′
oΣ

−1
o Xo +C

−1
o )−1z, σ2(X′

oΣ
−1
o Xo +C

−1
o )−1

)

π(σ2|η, y
o
) ∼ IG

(

αo +

∑e
i=1moi

2
,

γo + .5[(y
o
− δo)

′Σ−1
o (y

o
− δo) + µ′

o
C−1
o µ

o
−

z′(X′
oΣ

−1
o Xo +C

−1
o )−1z]

)

,

where z = X′
oΣ

−1
o (y

o
− δo) +C

−1
o µ

o
.

Given that the full vector of observations y
o
was not elicited (only sufficient statistics were),

we cannot immediately evaluate any term in these expressions. We re-express the components
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in these posterior distributions in terms of the elicited values instead, so they can be evaluated.

Suppose moi
observations were elicited as y

oi
from the ith expert opinion. Then

(X′
oΣ

−1
o (y

o
− δo))j = ko1x1j

(mo1
∑

n=1

(yojn
− δo1)

)

+ . . .+ koexej

(

moe
∑

n=1

(yojn
− δoe)

)

= ko1mo1x1j(yo1 − δo1) + . . .+ koemoexej(yoe − δoe),

as yoi
is the expected or average response for the design point.

Using a similar argument, we can show that

(y
o
− δo)

′Σ−1
o (y

o
− δo) = ko1

(mo1
∑

n=1

(yojn
− δo1)

2

)

+ . . .+ koe

(

moe
∑

n=1

(yojn
− δoe)

2

)

=
e
∑

i=1

koi
moi

(s2i + (yoi
− δoi

)2), (1)

where s2i = (yoi
− qξi)

2/Z2ξ , which is the variance approximation implicitly elicited from expert

i. Equation (1) follows from the identity V ar(Y ) = E[Y 2]− E[Y ]2.

By a similar argument

(X′
oΣ

−1
o Xo)ij =

e
∑

n=1

knmonxnixnj .

These representations allow the quantities in the posterior distributions to be calculated based

on the elicited values rather than the actual observations.
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For the unknown parameters η = (δo,Σo,mo,Co, µo, αo, γo) we propose the following prior

distributions:

µ
o

= aµo

Co = aCoI

αo = aαo

γo = aγo

moi
∼ Uniform(0.5m(e)oi

, 2.0m(e)oi
)

δoi

iid
∼ N(θo, ξ

2
o)

θo ∼ N(mθo , s
2
θo
)

ξ2o ∼ IG(aξ2o , bξ2o )

koi

iid
∼ G(φo, ωo)

φo ∼ G(aφo , bφo)

ωo ∼ G(aωo , bωo),

where a and b subscripted above indicate constants, and G(a, b) indicates a gamma distribution

with mean ab and variance ab2. The highly parametric specification above suggest that sensi-

tivity may result from choices of distributional form as well as hyperparameter choices. As with

any analysis, increasing the degree of assumption increases the potential for sensitivity to those

assumptions. For example, inadequate sample sizes will certainly exacerbate these sensitivities.

We consider a sensitivity study in Section 4 to examine the degree to which our results depend

on the hyperparameter choices given above.

There are similarities between this approach to the quantification of expert opinion and

Zellner’s approach using g-prior distributions (Zellner 1986; Agliari and Parisetti 1988). Both

approaches rely on the natural conjugate prior for (β, σ2). However, Zellner (1986) elicits poste-

rior means for β and σ2, while we elicit predicted observations y
o
. Agliari and Parisetti (1988)

extend Zellner’s methods to include a different design matrix XA; similarly, we do not require
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that the factor levels where the expert elicitation occurs correspond to the levels where the

physical or computer experimental data are collected.

2.3 Computer Experimental Data

We have used the expert opinion data to develop Stage 1 posterior distributions for β and

σ2. We continue to update our knowledge about these parameters using data from computer

experiments. Let the computer data and associated model parameters be indexed by c where

the jth element of the response vector Y c is ycj . Consider the following model:

Y c ∼ N(Xcβ + δc, σ
2Σc)

β|σ2 ∼ N(µ
c
, σ2Cc)

σ2 ∼ IG(αc, γc).

For this development, assume that Σc and Cc have the same diagonal form as Σo and Co.

The “prior” distributions for β|σ2 and σ2 are the Stage 1 posterior distributions given the expert

opinion data. The only other unspecified prior distributions are:

δcj
iid
∼ N(θc, ξ

2
c )

θc ∼ N(mθc , s
2
θc
)

ξ2c ∼ IG(aξ2c , bξ2c )

kcj
iid
∼ G(φc, ωc)

φc ∼ G(aφc , bφc)

ωc ∼ G(aωc , bωc).

Although assuming a diagonal structure for Σc yields a model for the computer experiment

where the observations are conditionally independent given β, δc, σ
2, and kc, the observations are

not unconditionally independent once the uncertainty in the unknown parameters is integrated

out. For example, Broemeling (1985) derives the distribution for Y c for the conjugate Bayesian

linear model. Our model for the correlation structure differs from those proposed in Currin et al.
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(1991) and Welch et al. (1992), where a distance-based parametric form for Σc is assumed with

the parameters selected using cross-validation or maximum likelihood estimation. Although

these forms of prior distribution could be incorporated into our analysis, we have chosen to

induce correlation through the hierarchical structure of the prior.

Computer models, especially when the physical processes are not well known, often produce

estimates that are biased with respect to the physical data. These biases may be in the mean

structure (location bias) or in the variance (scale bias). Computer experimental data are es-

pecially likely to have scale biases, as these data usually tend to be less variable than physical

experimental data; in fact, there is often no stochastic variability for given values of the factors,

because a computer code is often deterministic. The variability occurs relative to the assumed

model. Another reason for the reduced variability relative to physical experimental data is that

we know that not all factors generating the physical experimental data are incorporated into the

computer code—perhaps all of the factors causing variability are unknown. Since the location

bias addresses only differences in the intercept term (β0) between the computer and physical

data, more general bias structures for the parameters can also be modeled. In Section 3, we

motivate these ideas by introducing the operation of fluidized beds and the computer models

for that process.

Because the location biases are additive (instead of multiplicative) the model only requires

that data exist for a subset of the full set of factors. That is, if only one data source includes

information on a factor, then only that source is used in estimating that effect. The precision

with which those effects are estimated will be affected by the different amount of data used in

estimation. However, distributions can be calculated. If model choice is to be done using the

physical data only (as it is in our example), then all the factors would need to be present in the

physical experimental data. Thus, the framework is quite general and does not require that all

factors be present in each data source.

Other approaches that might be considered for modeling the computer experimental data

often employ a Gaussian process (GP) model (REFERENCE HERE). While the GP approach
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is commonly (and appropriately) used for many problems, the RBHM provides an alternative

that is useful and easily interpreted for a large class of problems. We will illustrate a problem

that is well suited for our proposed modeling approach in Section 3.

2.4 Incorporating Physical Experimental Data

Recall from Section 2.1 that the model for the physical experimental data is:

Y p ∼ N(Xpβ, σ
2I).

After incorporating the computer experimental data into the analysis, we have a Stage 2 posterior

that is used as the prior for (β, σ2) in the Stage 3 analysis.

The Stage 3 analysis calculates the final distributions for the parameters of interest. These

calculations cannot be done in closed form, but are carried out using Markov Chain Monte Carlo

(MCMC). See the Appendix for general information on MCMC and the Metropolis-Hastings

algorithm.

3 Application of RBHMs to Fluidized Bed Processes

Fluidized bed microencapsulation processes are used in the food industry to coat certain food

products with additives. Dewettinck et al. (1999) describe a physical experiment and several

corresponding thermodynamic computer models that were developed for predicting the steady-

state thermodynamic operation point of a Glatt GPCG-1 fluidized bed unit in the top-spray

configuration. Figure 1 illustrates the simple geometry of this unit, which is essentially an

upside-down, truncated cone. The base of the unit contains a screen, below which there is an

air pump. Also, there are coating sprayers at the side of the unit.

[Figure 1 about here]

To use the unit, a batch of uncoated food product is placed inside the “cone”, and the air

pump and coating sprayers are turned on. This “fluidizes” the product in the unit and coats

the product as it passes by the sprayer. This is continued until a desired coating thickness is



Integrated Analysis of Computer and Physical Experiments 14

achieved.

When room conditions and process conditions are constant, a fluidized bed process will attain

its steady-state thermodynamic operation point. This state can be described in terms of the

temperature and humidity inside the unit. The importance of the steady-state operation point

is that product characteristics, such as coating evenness and efficiency, are directly related to it.

Several variables potentially affect the steady-state thermodynamic operating point; namely,

• Vf , fluid velocity of the fluidization air

• Ta, temperature of the air from the pump

• Rf , flow rate of the coating solution

• Ts, temperature of the coating solution

• Md, coating solution dry matter content

• Pa, pressure of atomization air.

The ambient room conditions inside the plant, such as temperature Tr and humidity Hr, may

also have an effect on the steady-state process conditions.

3.1 The Data

Dewettinck et al. (1999) consider twenty-eight process conditions of particular interest (settings)

for a GPCG-1 fluidized bed process. In the experiment, distilled water was used as the coating

solution. Thus, Md was 0 (no dry matter content) for all 28 runs. Also, Ts was at room

temperature (about 20o C) for all 28 runs. Table 1 shows the room conditions (i.e., Tr and Hr)

and settings for the remaining four process variables (i.e., Ta, Rf , Pa, and Vf ).

For factor combination, glass beads were put in the unit, and the process was run for 15

minutes to attain steady-state. Then, temperature inside the unit was measured at 20, 25, and

30 minutes, and their average was recorded. The average outlet air temperature (the steady-state

response of interest), T2,exp, is reported in Table 2. Also, three unique computer models were
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also considered by Dewettinck et al. (1999) to predict the steady-state outlet air temperature

for each run. These computational responses are also given in Table 2 and are labeled as T2,1,

T2,2, and T2,3, respectively.

There are important differences among the three computational models that are described

in detail in Dewettinck et al. (1999). In summary, the first computer model does not include

adjustments for heat losses in the process. The second computer model takes those heat losses

into account. A further adjustment for the inlet airflow represents the fundamental difference

between the second and third computer models.

[Table 1 about here]

[Table 2 about here]

3.2 Modeling T2,exp in Terms of Room and Process Conditions

Table 3 shows the correlation matrix for the room conditions, process conditions, and observed

steady-state temperature T2,exp. Figure 2 is a matrix plot of these seven variables. Note that

Ta has the highest correlation with T2,exp (r = 0.73).

[Table 3 about here]

Choice of a model is complicated by the fact that the underlying design is not at all clear.

The covariance matrix reveals that some of the covariates are highly correlated (as high as 0.82)

indicating possible collinearity. We also note that the full second-order model is fully saturated.

[Figure 2 about here]

Chipman, Hamada, and Wu (1997) describe a Bayesian variable selection procedure that

places hierarchical prior distributions on second-order effects. In their approach, higher prior

probability is given to interactions if one of the main effects is in the model, and an even higher

probability is placed on interactions when both main effects are in the model. Using their

approach on the physical data, we obtain the variable selection results displayed in Table 4,

which provide the most likely models and their respective posterior probabilities.

To illustrate the RBHM approach, we use the most likely model from Table 4 to form Xβ,
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where X is composed of a column of ones (for the intercept) and columns corresponding to Ta,

Rf , Vf , and Rf × Vf , whose respective regression parameters are β = (β0, . . . , β4)
′.

[Table 4 about here]

Table 5 contains the OLS fit of the most likely model in Table 4.

[Table 5 about here]

In our example the hyperparameter values are given in Table 6. Note that the same hyper-

parameters were used for all three computer experiments. As we have no prior knowledge as

to the sign of the location bias, we center the distribution of δci at zero (that is, unbiased in

location), and allow the mean of that distribution to have a standard deviation of 10. While we

believe the computer models are all reasonably good approximations of the physical model, we

do not have a good idea about the degree of separation, and thus allow a generous variability

for the location biases (aξ2c = 2000 and bξ2c = 3.0 suggest a mean for the variance distribution

of 2000/(3 − 1) = 1000 and a standard deviation of 2000/((3 − 1) ∗ (3 − 2)) = 1000). The

distribution of scale biases is also somewhat unknown. With little or no prior knowledge, we

would allow the mean of the scale biases to be unity (unbiased in scale). Further, we believe the

standard deviation of the scale biases should be no greater than 15, thus we let the mean of the

scale bias distribution be 1 and the standard deviation 15. This allows a generous range for the

scale biases.

[Table 6 about here]

3.3 RBHM Analysis Results

Figures 3(a)-(e) show the posterior for β with only the physical experimental data, the physical

with each of the computer experimental data taken separately, and the final posterior distribu-

tion for β after incorporating all sources of information. Figure 3(f) shows the corresponding

posteriors for σ2. The figures indicate two important and appealing aspects of our RBHM ap-

proach. First, the additional sources of information reduce uncertainty in the distribution of

the parameters, thus making our estimates more precise. Second, the additional data sources
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do not necessarily contain the same amount of information (although, in our example, they do

have the same number of observations).

In addition to posterior distributions for β and σ2, our modeling approach allows us to es-

timate the bias terms. As an illustration, Figures 4(a) and 4(b) present the location and scale

bias predictive distributions for each of the computer models. Note that these distributions are

integrated over the distribution of individual specific location and scale bias terms. One appeal-

ing feature of these plots is that they indicate a new approach to computer model validation,

relative to the physical observations. Those models that have most mass over 0 are less location

biased for the physical experimental data. For example, the bias is more concentrated around 0

for the third computer model than for the other two computer models. These plots also reveal

the uncertainty associated with the bias terms (a feature that cannot easily be inferred from a

casual examination of the data). Note that the third model is the computer model that attempts

to account for more phenomena. Figure 4(b) reveals that all three computer models tend to

underestimate the variability in the physical experimental data. Scale bias terms more than one

(because the scale bias is parameterized as 1/kCi
) indicate underestimation of variability.

[Figure 3-4 about here]

Table 7 contains the maximum likelihood estimate (MLE), 95% confidence intervals (calcu-

lated from only the physical experimental data), the posterior mean and 95% highest posterior

density (HPD) intervals calculated using the integrated computer and physical experimental data

for β and σ2. Recall that an HPD interval is the shortest interval in the posterior distribution

containing 95% of the posterior probability. Notice that the HPD intervals are shorter, some-

times significantly so, than the 95% confidence intervals, reflecting the additional information

that has been incorporated into the analysis.

[Table 7 about here]
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3.3.1 Expert Opinion Data

Although no expert opinions were available for use in the fluidized bed example, it is interesting

to observe the impact of such data on the results. For purely illustrative purposes, suppose that

eight expert opinions were elicited for use in the fluidized bed example.

[Table 8 about here]

The expert opinions are shown in Table 8 where T2,o denotes the expected steady-state outlet

air temperature, q0.9 is the corresponding subjective 0.9 quantile on the outlet air temperature,

and m
(e)
o is the equivalent “worth” of the opinion (see Section 2.2).

[Figure 5 about here]

Figure 5 contains two posterior distributions, one for the regression coefficient for flow rate

(β2) and one for the error variance (σ2). The solid line is the posterior distribution conditional

on the artificial expert opinion with one computer model and the physical experimental data.

The dotted line is the posterior distribution with only the physical experimental data and one

computer model. Due to estimation of location and scale biases for both the computer data and

the artificial expert opinion data, there is only a small gain in information for adding the expert

opinion data. No inference from these posterior distributions should be made as the expert

opinion data was generated for illustration purposes only.

4 Prior Sensitivity

Bayesian analyses which contain many parameters have the potential to rely heavily on prior

distributions and prior parameter choice. To assess the impact of our choices of prior parameters

(and hyperparameters) we present a small sensitivity analysis in this section.

To address hyperparameter sensitivity, we designed a 210−5 fractional factorial design where

we chose “high” and “low” values that we deemed feasible. The values we chose are shown in

Table 9.

[Table 9 about here]

Marginal posterior distributions for the regression coefficients (β0, . . . , β4) and the error vari-
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ance (σ2) are shown in Figure 6. Because the posterior distributions do not lie exactly on one

another, there is clearly some sensitivity to prior specification. The differences in the posterior

distributions are not significant however. The only clear deviation is 6 of the 32 fractional facto-

rial combinations for σ2, and these produce significant departure from the posterior distributions

presented in Section 3.3. We note that each of these stems from a prior distribution which in-

cludes nearly no mass around the posterior distribution. That is, they represent infeasible prior

distributions. This indicates that care should be taken when specifying prior parameters on the

variability. Sensitivity is only observed when priors are completely misspecified.

[Figure 6 about here]

5 Conclusions/Discussion

When expert opinion is elicited, an equivalent number of observations m
(e)
oi is also stated that

reflects its worth in terms of a number of equivalent physical observations. This parameter is not

required for the computer experimental data because this information is captured in the prior

parameters θc, ξ
2
c , φc, and ωc. These parameters control the prior information about the location

and scale biases for the computer experimental data. If the biases are known exactly (a point

mass prior), then each computer observation counts as exactly one physical observation—no

information must be used to estimate the biases, and it can all be used to estimate β and σ2.

If these parameters are used to specify a very diffuse (“non-informative”) prior with close to

infinite variances, then each computer observation counts for only a tiny fraction of a physical

observation. If the parameters specify an informative prior, then the computer observations

account for some intermediate fraction of a physical observation.

The model that we have used in our example treats each computer model independently. In

the extreme, this implies that if the three models were identical, we would count each observation

three times the fraction of a physical observation implied by the prior distributions. We can

change this by modeling correlations between the computer models. There are two obvious ways

to do this. The simplest is to add a hierarchical structure on the hyperparameters (θc, ξc, φc,
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and ωc) of the various computer models. As discussed in Section 2.3, this induces correlations

in the unconditional distributions of the computer observations. A second is to model the entire

vector of observations from the three computer models directly as a multivariate normal and

to specify an appropriate covariance structure. This choice would be especially appropriate in

the case where we had precise information about the differences in the physics modeled by the

individual computer models. For this example, we have insufficient knowledge about the precise

similarities/differences between the three computer models to permit either of these to be used.

We have not imposed the requirement that the computed (or measured) value of the response

variable be considered at the same factor values in both experiments. We only require that there

exist some common set of factors (either all or at least some) for both experiments. While the

example does not fully illustrate this, it is an important feature in the general model. As the

analysis proceeds by using information from one type of experiment to update the distribution

of the parameters, if there is no data at a particular design point for a particular experiment,

then the distribution for the parameter remains unchanged, except for correlations which may

exist in the parameters.

As with any Bayesian analysis, there is sensitivity to the specification of the prior distribu-

tions for the hyperparameters. Fortunately, however, the sensitivity is only particularly acute

when the priors are completely misspecified. Although some of the hyperparameter selections

in Section 3.2 are somewhat arbitrary, they illustrate the kinds of discussions that the analyst

would engage in with the data owner to come to “reasonable” hyperparameter distributions. If

at all possible, we prefer diffuse but informative prior distributions using expert input.

In this example, we included all three sets of computer data, even though we believed that

the models were successively improved. There are two reasons for this choice: first, we believe

that by appropriate modeling of biases, there is information in all of the codes that should not

be discarded, and second, it is often of interest to characterize the biases of each code relative

to the physical data.

We have presented an RBHM that can be used to combine data from both computer and
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physical experiments. When available, expert opinion data is also used to “sharpen” the initial

informative, but rather diffuse, prior distributions. Appropriate biases are introduced as a way

to account for differences in these data sources. Sample results indicate that significantly more

precise estimates of the regression coefficients and error variance are obtained by means of this

method. In addition, the methodology can be used to recursively estimate those unknown bi-

ases of particular interest. Biases that are not particularly interesting can be marginalized (this

is, averaged out of the analysis using appropriate priors). Obviously, not all problems involv-

ing combination of computer models and physical experiments are well suited to combination

through statistical (response surface) models. In our example, however, the approach is well

suited to the data collected and the biases seem to reflect the actual differences between the

computer models and the physical data.

The methodology can also be used to combine various other kinds of experimental informa-

tion. Similarly, information from more than two physical and/or computer experiments can also

be combined using the RBHM simply by considering an appropriate bias structure for each data

source and by increasing the number of stages in the analysis accordingly.
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A Appendix

A.1 Markov Chain Monte Carlo (MCMC)

Suppose we are interested in making statistical inference about a parameter (possibly vector

valued) Θ. We characterize our information (or lack of information) about the distribution of
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Θ = {θ1, θ2, . . . , θn} as π(Θ) (prior distribution). Data are collected and represented by the

likelihood or f(x|Θ). In any Bayesian analysis, inference on the parameters depends on the

calculated posterior distribution

π(Θ|x) =
π(Θ)f(x|Θ)

∫

Θ π(Θ)f(x|Θ)dΘ
. (2)

In many situations, the denominator of (2) is not a well known integral and must be calculated

numerically; e.g., Markov Chain Monte Carlo (MCMC). Let Θ−v be Θ with the vth element

removed. A successive substitution implementation of the MCMC algorithm proceeds as follows:

(1) Initialize Θ(0) and set t = 1.

(2) Set v = 1.

(3) Generate an observation θ
(t)
v from the distribution of [θv|Θ

(t−1)
−v ], replacing recently

generated elements of Θ
(t−1)
−v with elements of Θ

(t)
−v if they have been generated.

(4) Increment v by 1 and go to (3) until v = n.

(5) If v = n increment t by 1 go to (2).

under conditions outlined in Hastings (1970), as t → ∞ the distribution of {θ
(t)
1 , . . . , θ

(t)
n }

tends to the joint posterior distribution of Θ, as desired.

Typical implementation of the algorithm generates an initial “large” number of iterations

(called the burn-in) until the observations have converged. The burn-in samples are discarded,

and the observations generated thereafter are used as observations from the posterior distribution

of Θ. Nonparametric density estimators (Silverman 1986) can then be used to approximate the

posterior distribution.

A.2 Metropolis-Hastings

Some complete conditional distributions may not be available in closed form. That is, it may

be difficult to sample from [θv|Θ
(t−1)
−v ] ∝ g(θv). Obtaining observations from such distributions
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is facilitated by implementing a Metropolis-Hastings step (Hastings 1970) for step (3) in the

algorithm above. This is difficult because the distribution is known only up to a constant.

(1) Initialize θ
(0)
vold

and set j = 0.

(2) Generate an observation θ
(j)
vnew from a candidate distribution q(θ

(j)
vold

, θ
(j)
vnew), where q(x, y)

is a probability density in y with mean x.

(3) Generate a uniform (0,1) observation u.

(4) Let

θ(j+1)vnew
=











θ
(j)
vnew , if u ≤ α(θ

(j)
vold

, θ
(j)
vnew)

θ
(j)
vold

, otherwise,

where α(x, y) = min
{

g(y)q(y,x)
g(x)q(x,y) , 1

}

.

(5) Increment j and go to (2).

The candidate distribution can be almost any distribution (Gilks et al. 1996), although a sym-

metric distribution such as the normal results in a simplification of the algorithm, and is called

a Metropolis step (as opposed to a Metropolis-Hastings step). A common choice for q(x, y) is a

normal distribution with mean x and some variance which allows the random deviates to be a

representative sample from the entire complete conditional distribution. A rule of thumb given

in Gilks et al. (1996) suggests that the variance in q(x, y) be one-third of the sample variance

of the observed data.
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Figure 1: A Glatt GPCG-1 fluidized bed unit.
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Figure 2: Scatterplot matrix of the experimental response with each of the 6 covariates.
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Figure 3: Comparison of posterior distributions conditional on different sources of information:
(a) β0, intercept; (b) β1, air temperature; (c) β2, flow rate; (d) β3, fluid velocity; (e) β4,
interaction between flow rate and fluid velocity; and (f) σ2. The different lines indicate inclusion
of different data sources.
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Figure 4: Comparison of (a) location bias and (b) scale bias predictive distributions for three
different computer models of the fluidized bed process.
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Figure 5: Comparison of posterior distributions for (a) β2, flow rate and (f) σ2. The solid line is
the posterior distribution conditional on the artificial expert opinion with one computer model
and the physical experimental data. The dotted line is the posterior distribution with only the
physical experimental data and one computer model.
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Figure 6: Sensitivity analysis for selected hyperparameters in the RBHM formulation: (a) β0,
intercept; (b) β1, air temperature; (c) β2, flow rate; (d) β3, fluid velocity; (e) β4, interaction
between flow rate and fluid velocity; and (f) σ2. The different lines indicate a different factorial
combination in the sensitivity analysis, and the thick solid line indicates the posterior at the
original settings. The “rug” at the bottom of each picture is the frequentist confidence interval
based on the physical data only fit to the five parameter linear model.
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Table 1: Process Variables

Hr (%) Tr (◦C) Ta (◦C) Rf (g/min) Pa (bar) Vf (m/s)

51.0 20.7 50 5.52 2.5 3.0
46.4 21.3 60 5.53 2.5 3.0
46.6 19.2 70 5.53 2.5 3.0
53.1 21.1 80 5.51 2.5 3.0
52.0 20.4 90 5.21 2.5 3.0
45.6 21.4 60 7.25 2.5 3.0
47.3 19.5 70 7.23 2.5 3.0
53.3 21.4 80 7.23 2.5 3.0
44.0 20.1 70 8.93 2.5 3.0
52.3 21.6 80 8.91 2.5 3.0
55.0 20.2 80 7.57 1.0 3.0
54.0 20.6 80 7.58 1.5 3.0
50.8 21.1 80 7.40 2.0 3.0
48.0 21.2 80 7.43 2.5 3.0
42.8 22.4 80 7.51 3.0 3.0
55.7 20.8 50 3.17 1.0 3.0
55.2 20.7 50 3.18 1.5 3.0
54.4 20.7 50 3.19 2.0 3.0
55.4 19.8 50 3.20 2.5 3.0
52.9 20.0 50 3.19 3.0 3.0
28.5 18.3 80 7.66 2.5 3.0
26.1 19.0 80 7.69 2.5 4.0
24.2 18.9 80 7.69 2.5 4.5
25.4 18.5 80 7.70 2.5 5.0
45.1 19.6 50 3.20 2.5 3.0
43.1 20.3 50 3.23 2.5 4.0
42.7 20.4 50 3.20 2.5 4.5
38.7 21.6 50 3.22 2.5 5.0
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Table 2: Experimental and Computer Model Steady-State Temperatures

T2,exp (◦C) T2,1 (
◦C) T2,2 (

◦C) T2,3 (
◦C)

30.4 32.4 31.5 30.2
37.6 39.5 38.5 37.0
45.1 46.8 45.5 43.7
50.2 53.8 52.6 51.0
57.9 61.7 59.9 58.2
32.9 35.2 34.6 32.6
39.5 42.4 41.0 39.1
45.6 49.5 48.5 46.4
34.2 37.5 36.6 34.8
41.1 45.5 44.3 42.0
45.7 50.5 49.0 47.0
44.6 49.8 48.4 46.3
44.7 49.8 48.4 46.3
44.0 49.2 48.0 45.7
43.3 48.6 47.5 45.4
37.0 39.5 38.0 37.7
37.2 39.5 38.5 37.1
37.1 39.5 37.5 36.7
36.9 39.5 38.5 36.1
36.8 37.7 37.2 36.2
46.0 48.7 47.3 45.1
54.7 57.7 56.2 54.2
57.0 60.1 58.7 57.0
58.9 62.0 60.5 58.7
35.9 37.9 37.1 36.1
40.3 41.7 40.8 40.1
41.9 43.0 42.3 41.4
43.1 43.9 43.3 42.6

Table 3: Correlation Matrix

Hr Tr Ta Rf Pa Vf T2,exp

Hr 1.00 0.57 −0.26 −0.33 −0.39 −0.69 −0.53
Tr 0.57 1.00 −0.09 −0.07 −0.04 −0.28 −0.37
Ta −0.26 −0.09 1.00 0.82 0.06 −0.08 0.73
Rf −0.33 −0.07 0.82 1.00 0.09 −0.10 0.35
Pa −0.39 −0.04 0.06 0.09 1.00 0.18 0.08
Vf −0.69 −0.28 −0.08 −0.10 0.18 1.00 0.47
T2,exp −0.53 −0.37 0.73 0.35 0.08 0.47 1.00
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Table 4: Bayesian Variable Selection Results

Model Pr(Model|Data)

β1Ta + β2Rf + β3Vf + β4Rf × Vf 0.1169
β1Ta + β2Rf + β3Vf + β4Hr × Tr + β5Rf × Vf 0.0349
β1Ta + β2Rf + β3Vf + β4H

2
r 0.0155

β1Ta + β2Rf + β3Vf + β4Tr × Ta + β5Rf × Vf 0.0141
β1Ta + β2Rf + β3Vf + β4Rf × Vf + β5V

2
f 0.0136

β0 + β1Ta + β2Rf + β3Vf + β4H
2
r 0.0132

β1Tr + β2Ta + β3Rf + β4Vf + β5Rf × Vf 0.0130

Table 5: OLS fit for T2,exp = β0 + β1Ta + β2Rf + β3Vf + β4Rf × Vf + ε

Parameter Standard T for H◦:
Variable DF Estimate Error Parameter= 0 Prob> |T |

Intercept 1 42.9769 0.1714 250.7352 0.0000
Ta 1 9.4756 0.3056 31.0076 0.0000
Rf 1 -4.9048 0.3035 -16.1626 0.0000
Vf 1 3.9345 0.1761 22.3445 0.0000

Rf × Vf 1 1.4263 0.1671 8.5336 0.0000

Table 6: Hyperparameter Values for Parameters in Computer Experiments

Hyperparameter Value

Cc 1.0× 10−4

αC 3.0
βC 3.0
mθc 0.0
s2θc

100.0

aξ2c 2000.0

bξ2c 3.0

aφc 1.0× 10−3

bφc 1.0× 10−3

aωc 1.0× 10−3

bωc 1.0× 10−3



Integrated Analysis of Computer and Physical Experiments 35

Table 7: Comparison of Confidence and Credible Intervals

95% Confidence Int. 95% Credible HPD Int.
MLE Lower Upper Post. Mean Lower Upper

σ2 0.81 0.49 1.60 0.53 0.36 0.77
β0 42.97 42.62 43.33 43.01 42.75 43.28
β1 9.47 8.84 10.10 9.79 9.44 10.13
β2 -4.90 -5.53 -4.27 -4.82 -5.15 -4.48
β3 3.93 3.57 4.29 3.76 3.56 3.96
β4 1.42 1.08 1.77 1.35 1.17 1.53

Table 8: Example Expert Opinion Data

Ta (◦C) Rf (g/min) Vf (m/s) T2,o (◦C) q0.9 (
◦C) m

(e)
o

50 3 3 37 39 0.5
90 3 3 68 70 0.5
50 9 3 23 25 0.5
90 9 3 51 53 0.75
50 3 5 49 53 1.0
90 3 5 75 77 0.5
50 9 5 42 43 0.75
90 9 5 69 72 0.5

Table 9: Hyperparameter Values for Sensitivity Analysis

Hyperparameter Low High

Cc 1.0× 10−7 0.1
αC 0.1 5.0
βC 0.1 5.0
s2θc

50 500

aξ2c 100 1000

bξ2c 1 10

aφc 1.0× 10−2 2
bφc 1.0× 10−2 2
aωc 1.0× 10−2 2
bωc 1.0× 10−2 2


